Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 510: 50-65, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521499

RESUMO

Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Sistema Nervoso , Gastrulação/genética , Genes Homeobox
2.
Bio Protoc ; 12(2): e4301, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35127991

RESUMO

The SARS-CoV-2 pandemic and vaccination campaign has illustrated the need for high throughput serological assays to quantitatively measure antibody levels. Here, we present a protocol for a high-throughput colorimetric ELISA assay to detect IgG antibodies against the SARS-CoV-2 spike protein. The assay robustly distinguishes positive from negative samples, while controlling for potential non-specific binding from serum samples. To further eliminate background contributions, we demonstrate a computational pipeline for fitting ELISA titration curves, that produces an extremely sensitive antibody signal metric for quantitative comparisons across samples and time.

3.
J Biol Chem ; 297(1): 100862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34116057

RESUMO

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Elonguina/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Polimerase II/genética , Ubiquitina-Proteína Ligases/genética , Animais , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , DNA Helicases/química , DNA Helicases/ultraestrutura , Reparo do DNA/genética , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , Elonguina/química , Elonguina/ultraestrutura , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , RNA Polimerase II/química , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação/genética
4.
PLoS Genet ; 7(11): e1002365, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22125491

RESUMO

The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas de Membrana/genética , Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Proliferação de Células , Homeostase , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...